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1 Abstract:   Topological  crystalline  insulators  (TCIs)  have  been  of  great  interest  in  the  area  of 

2 condensed matter physics. We investigated the effect of indium substitution on the crystal structure 

3 and transport properties in the TCI system (Pb1−x Snx )1−yInyTe. For samples with a tin concentration 

4 x  ≤ 50%, the low-temperature resisitivities show a dramatic variation as a function of indium 

5 concentration: with up to ∼ 2% indium doping the samples show weak-metallic behavior, similar 

6 to their parent compounds; with ∼ 6% indium doping, samples have true bulk-insulating resistivity 

7 and present evidence for nontrivial topological surface states; with higher indium doping levels, 

8 superconductivity was observed, with a transition temperature, Tc, positively correlated to the 

9 indium concentration and reaching as high as 4.7 K. We address this issue from the view of bulk 

10 electronic structure modified by the indium-induced impurity level that pins the Fermi level. The 

11 current work summarizes the indium substitution effect on (Pb,Sn)Te, and discusses the topological 

12 and superconducting aspects, which can be provide guidance for future studies on this and related 

13 systems. 
 

14 Keywords: topological crystalline insulator; crystal growth; superconductivity 

 
 

 
15     1.  Introduction 

16 Topological insulators (TIs) are a class of materials that are currently the focus of considerable 

17     attention since they represent a new state of matter in which the bulk is an insulator with an "inverted" 

18     energy gap induced by a strong spin-orbit coupling (SOC), which leads to the emergence of unusual 

19     gapless edge or surface states protected by time-reversal-symmetry[?  ?  ?  ?  ].  First discovered 

20     in two-dimensional systems, one of the simplest topological insulators is the quantum spin Hall 

21     state, in which the SOC plays the same role as the magnetic field in the quantum Hall effect.  In 

22     the quantum Hall effect, the bulk conductance is zero while the edge states are conducting with 

23     current flowing in one direction around the edge of the system. Similarly, in the quantum-spin-Hall 

24     state, the bulk is still insulating while edge-state electrons with opposite spins propagate in opposite 

25     directions, consistent with time-reversal symmetry.  Theoretical concepts were soon generalized to 

26     three dimensions and shown experimentally in materials such as Bi1−x Sbx [?  ].  As in the 2D case, 
27     the direction of an electron’s motion along the surface of a 3D topological insulator is locked to the 

28     spin direction, which now changes continuously as a function of propagation direction, resulting in 

29     an unusual "planar metal".  In the bulk of a TI, the electronic band structure resembles that of an 



 

30     ordinary band insulator, with the Fermi level falling between the conduction and valence bands. On 

31     the surface of a TI there are special states that fall within the bulk energy gap and allow surface 

32     metallic conduction. Although ordinary band insulators can also support conductive surface states: 

33     the locking of the spin and propagation directions eliminates the possibility of backscattering from 

34     nonmagnetic impurities. 

35 The first key experiment in this field was the observation of the 2D quantum-spin-Hall effect in a 

36     quantum-well structure made by sandwiching a thin layer of mercury telluride (HgTe) between layers 

37     of mercury cadmium telluride (Hgx Cd1−x Te), following a theoretical prediction[? ]. The first 3D TI to 
38     be probed using angle-resolved photoemission spectroscopy (ARPES) was the semiconducting alloy 

39     Bi1−x Sbx [?  ].  Simpler versions of the 3D TI were theoretically predicted in Bi2Te3, Sb2Te3[?  ]  and 

40     Bi2Se3[?  ?  ]  compounds with a large bulk gap and a gapless surface state consisting of a single 
41     Dirac cone. Later ARPES experiments indeed observed the linear dispersion relation of these surface 

42     states[? ? ]. These discoveries confirmed the ubiquitous existence in nature of this new topological 

43     state. 

44 In 2011, the notion of "topological crystalline insulators (TCIs)" was introduced to extend the 

45     topological classification of band structures to include certain crystal point group symmetries[?  ]. 

46     This new state of matter features metallic surface states with quadratic band dispersion on high 

47     symmetry crystal surfaces, and it was shown that such a situation is realized in an insulating crystal 

48     having rocksalt structure.  It has caused quite a sensation since the first example, SnTe, has been 

49     theoretically[?  ]  and experimentally[?  ]  confirmed to exhibit topological surface states in <001>, 

50     <110> and <111> surfaces.  Soon after this discovery, the topological surface state in the Pb-doped 

51     Pb1−x Snx Te and Pb1−x Snx Se have been verified by ARPES and Landau level spectroscopy using 
52     scanning tunneling microscopy and spectroscopy[?  ?  ?  ], thus expanding the range of relevant 

53     materials.  Alongside SnTe and the related alloys Pb1−x Snx Se/Te, other chalcogenides such as SnS 
54     and SnSe that incorporate lighter elements have also been predicted to be TCIs even without the 

55     SOC[? ]. In theory, by applying external pressure, normal IV-VI rocksalt chalcogenides can be tuned 

56     into TCIs[?  ].  Besides the materials with rocksalt crystal structure, Hsieh et.al. predicted that the 

57     antiperovskite family are also promising materials for exploring the topological and other related 

58     properties[?  ].  More recently, a new phase of Bi is stablized by strain, has been found to be a TCI 

59     based on mirror symmetry, similar to SnTe[? ]. 

60 The discovery of TIs and TCIs has also stimulated the search for topological superconductors 

61     (TSCs), whose surfaces should exhibit Majorana fermions[? ]. Superconductors derived from TIs by 

62     doping have been considered as TSC candidates, such as Cux Bi2Se3[? ? ]. Since the topological surface 

63     states are protected from backscattering by disorder, it should be safe to tune the chemical potential 

64     through chemical substitution.   The ARPES studies performed on Sn1−x Inx Te (SIT) at x = 0.045 
65     confirmed that the topological surface states remain intact after In doping[? ]. In fact, SnTe becomes 

66     a superconductor upon substituting 2% or more of Sn with In, which introduces hole carriers[? ? ? ? 

67     ]. Similarly, doping the TCI Pb0.5Sn0.5Te with > 10% indium also induces superconductivity[? ]. This 

68     spurs interest in searching for the superconducting analogue, a time-reversal-invariant topological 

69     superconductor (TSC), in this system.  Point-contact spectroscopy experiments performed on SIT 
70     with varies In concentrations found that a zero-bias conductance peak is observed only in the cleanest 

71     samples with x ≈ 0.04, suggesting that there is competition between topological and non-topological 

72     superconducting states, and that disorder may determine the outcome[? ]. 

73 A challenge for characterizing the transport properties of surface states in TI/TCI materials such 

74     as Bi2Se3 and SnTe is the dominance of a pronounced bulk conductance[? ? ]. Despite considerable 

75     efforts to reduce the bulk carrier density, such as modifying crystal growth method[?  ], reducing 

76     sample thickness[? ] and chemical counterdoping[? ? ? ], the bulk conduction has proved difficult to 

77     suppress. Inspired by the goal of finding truly bulk-insulating topological materials, we have found 

78     that indium doping the TCI materials (Pb,Sn)Te can yield a huge bulk resistivity while maintaining 

79     topological surface states[? ]. 



 

80 In this article, we present a review of the effects of indium substitution on the crystal structure, 

81     resistivity behavior, and electronic band structure in the TCI family (Pb1−x Snx )1−yInyTe (PSIT). By 
82     varying the indium concentration, samples show an extreme range of low-temperature resistivities: 

83     with a few percent indium doping, the samples show weak-metallic behavior; with ∼6% indium 

84     doping, samples have true bulk-insulating resistivity and present evidence for nontrivial topological 

85     surface states; with higher indium doping levels, superconductivity with a transition temperature Tc 

86     positively correlated to the indium concentration was observed. We consider this behavior from the 

87     standpoint of the localized impurity states associated with the indium dopants. 
 

88     2.  Results 

 

89     2.1. Crystal structure 
 
 
 

 
 

Figure 1. (color online) (a) A sketch of the crystal structure of SnTe with Sn atoms (yellow) partially 

replaced by Pb (grey) and In (red). (b) X-ray powder diffraction (XRD) patterns for SnTe (black), 

Pb0.5Sn0.5Te (blue) and (Pb0.5Sn0.5)0.7In0.3Te (red), respectively. Each dashed line marks the position 

of an XRD peak of a compound with the same color. (c-e) Optical microscope photos of the pristine 

surface of SnTe (c), Pb0.5Sn0.5Te (d) and (Pb0.5Sn0.5)0.7In0.3Te (e). 
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SnTe is a IV-VI semiconductor that crystallizes in the cubic rocksalt structure at room 

temperature, and maintains this structure after a certain degree of substitution of Sn with Pb and/or 

In (Figure 1a). Due to the unchanged crystal structure, the crystal point group symmetries that are 

essential to maintain the topological surface states remain the same. Because of the difference in lattice 

constants of the end members (PbTe > SnTe > InTe)[? ], the lattice parameters of (Pb1−x Snx )1−yInyTe 

compounds vary with x and y. Figure 1b shows the XRD patterns of SnTe (x = 1, y = 0, black), 

Pb0.5Sn0.5Te (x = 0.5, y  = 0, blue) and (Pb0.5Sn0.5)0.7In0.3Te (x = 0.5, y  = 0.3, red), respectively. 

Compared to the parent compound SnTe, with a lattice constant a = 6.32 Å, Pb-doping increases 

the lattice constant (a = 6.39 Å for Pb0.5Sn0.5Te). Subsequent In-doping can then decrease the lattice 

constant (a = 6.36 Å for (Pb0.5Sn0.5)0.7In0.3Te).  Similarly, a systematic shrinking of the unit cell as 

a function of In content has been observed in previous studies of SIT[?  ?  ].  The measured lattice 
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parameters listed on the figure for the various compositions are qualitatively consistent with Vegard’s 

law and the differences in radii of the ionic components. With more Sn or Pb atoms being replaced 

by In, the distortion of the crystal structure gets larger, and eventually the solubility limit is reached, 

indicated by the appearance of the secondary phase InTe. 

Common tools to characterize the surface states include angle-resolved photoemission 

spectroscopy (ARPES) and scanning tunneling microscopy (STM). To apply these techiques, one 

typically needs atomically-flat and well-oriented surfaces. For the topological insulator Bi2Se3, this 

is not be a problem, since it can be easily cleaved due to weak coupling between its layers. In the 

case of SnTe related compounds, however, the situation is more challenging due to their isotropic 

cubic structures. To illustrate, Figures 1c-1e show microscope photos of pristine surfaces. The flat, 

shiny planes are cleaved surfaces, and they become smaller with increasing Pb/In substitution. 

Thus, it appears that substitution of Pb or In atoms introduces lattice distortion and leads to smaller 

cleaved surfaces for surface-sensitive studies. STM studies of SIT single crystal samples have been 

successfully performed[? ], as discussed in Sec. 2.5. Direct ARPES studies of PSIT single crystals 

are few, and it has proved more practical to perform measurements on thin films evaporated from 

previously characterized bulk samples[? ? ]. 
 

2.2. Resistivity behaviors of In-doped Pb1−x Snx Te 

 

 

(Pb0.5Sn0.5)1-yInyTe 
 

 

T (K) 

 

 
Figure 2.   (color online) Temperature dependence of the resistivity for (Pb0.5Sn0.5)1−yInyTe single 
crystals with indium contents 0 ≤ y ≤ 0.30. 
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The evolution of the electronic properties with composition have been investigated through 

transport measurements. Here we take (Pb0.5Sn0.5)1−yInyTe as an example to illustrate the effect 

of indium substitution. As shown in Figure 2, pure Pb0.5Sn0.5Te shows a metallic-like behavior 

with a p-type carrier density similar to SnTe. By introducing increasing amounts of indium into 

the Pb0.5Sn0.5Te system, single crystal samples show quite divergent, nonmonotonic variations in 

resistivity in the normal state. For the samples with one percent or less indium, the resistivity is 

weakly metallic, just like the resistivity behavior of pure SnTe[? ] or Pb1−x Snx Te without indium 

doping[? ]. Increasing y to 0.06, we observe that the resistivity at 10 K rises by five orders of 

magnitude. With further increases of y, the resistivity drops, but remains semiconducting, consistent 
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with earlier studies[? ? ? ? ].  This resistivity behavior in the normal state is quite different from 

the case of In doped SnTe[? ], where all samples are weakly metallic in the normal sate. At low 

temperature, samples show true bulk-insulating resistivity and and present evidence for nontrivial 

topological surface states[? ]. With higher indium doping levels, superconductivity with a transition 

temperature Tc positively correlated to the indium concentration was observed, and the highest Tc, 

∼ 4.7 K, was achieved for 45% indium doped SnTe samples [? ? ] and 30% indium doped Pb0.5Sn0.5Te 
samples [? ]. 

The effect of indium substitution is similar for other (Pb,Sn)Te compositions. Nonmonotonic 

variation in the normal-state resistivity with y is also found in transport measurements of PSIT 

for many series with different x values. Specifically, x=0.5 is not the only system that shows 

large bulk resistance when doped with a low concentration of indium.   In the whole family of 
6 

138 (Pb1−x Snx )1−yInyTe, maximum resistivities that surpass 10 Ωcm are observed for x=0.25-0.30. Even 
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for x=0.35,  doping with 6% In results in a rise in resistivity by 6 orders of magnitude at low 

temperature.  These phenomena can be well explained in a picture where the chemical potential is 

pinned within the band gap, which will be discussed in detail in a later section. 

A  common  test  of  the  topological  character  of  surface  states  involves  measurements  of 

magnetoresistance (MR) at low temperature[?   ].   The symmetry-protected coupling of spin and 
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Figure 3. (color online) Weak antilocalization magnetoresistance of (Pb1−x Snx )1−yInyTe. (a) MR for a 

(Pb0.65Sn0.35)0.98In0.02Te sample measured at temperatures of T = 5, 20, 30 and 50 K in perpendicular 
magnetic fields of |B| ≤ 7 T. The WAL effect is overwhelmed at high temperatures by the bulk 

conduction states. (b,c) MR for (Pb0.65Sn0.35)0.98In0.02Te (black), (Pb0.5Sn0.5)0.94In0.06Te (blue) and 
(Pb0.8Sn0.2)0.94In0.06Te (red) measured at 5 K in a full field range of ±7 T and the enlarged low-field 

regime |B| ≤ 0.6 T. (d,e) Magnetoconductance ∆G = ∆(1/R) of the (Pb0.65Sn0.35)0.98In0.02Te sample 

measured at 5 K and 20 K, respectively. Lines represent the result of fitting using WAL formula with 

fixed α = 0.37 and variable lφ = 51 nm (20 K) and 58 nm (5 K). (f) Magnetoconductance of the 

(Pb0.5Sn0.5)0.94In0.06Te sample measured at 5 K. Line is fitted by the WAL formula together with an 

additional −B2 term. 
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momentum for surface states makes them immune to weak localization effects.   Application of 

a transverse magnetic field breaks time-reversal symmetry[? ], thus removing the topological 

protection and leading to a field-induced increase in resistance.  Figure 3a shows data for ∆R  = 

R(B) − R(0) measured  at  several  temperatures  for  a  magnetic  induction  |B|  ≤  7  T  applied 

perpendicular to the (001) surface of the (Pb0.65Sn0.35)0.98In0.02Te sample. At temperatures of 30 K 
and below, the field dependence of the induced resistance has a form qualitatively consistent with 

that expected for weak anti-localization (WAL) of two-dimensional electron states.The MR curve at 

5K (black) clearly shows a cusp near zero field, which is a sign of the WAL effect and suggests the 

dominance of topological surface states. At elevated temperature, the cusp disappears, and the curves 

in the low-field regime (not shown) are dominated by the parabolic B-dependence of the bulk states[? 

? ], which is a reflection of the bulk carriers under a Lorentz force in a perpendicular field. The 

magnitude of the MR changes monotonically with temperature, a fact that needs further study to 

fully understand. 

In order to clarify the nature of surface states in samples with different compositions, in Fig. 3b, 

3c we compare the MR behavior at 5 K between (Pb0.8Sn0.2)0.94In0.06Te (red), (Pb0.65Sn0.35)0.98In0.02Te 

(black), and (Pb0.5Sn0.5)0.94In0.06Te (blue). In the low-field regime, the x=0.35 sample clearly shows a 

WAL effect even with a few percent indium, which is consistent with the ARPES evidence that the 

topological surface states of In-doped SnTe are maintained when In doping concentration is roughly 

4.5%[? ]. To be more quantitative, we convert the data to conductance, G, and compare with the 

theoretical formula for WAL[? ], 

∆G = 
α e

 
 
[ln(B /B) − ψ( 1 + B 

 
/B)], (1) 

π h 
φ 2 φ 
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where ψ is the digamma function and α is a number equal to 1/2 times the number of conduction 

channels; Bφ = Φ0/(8πl2 ), with Φ0 = h/e and lφ being the electronic phase coherence length. For 

our system, one expects four Dirac cones crossing the Fermi surface[? ? ], which would give α = 2. 

Figure 3b shows that we get a good fit to the 20-K data for the x = 0.35, y = 0.02 sample with α = 0.37 

and lφ = 51 nm. Moving to T = 5 K in Fig. 3d, the low-field data can be described by keeping α fixed 

and increasing lφ to 58 nm; however, the data also exhibit a large oscillation about the calculated 
curve for |B| > 0.2 T. This may be due to a Landau level crossing the Fermi energy[? ]. Turning to the 

x = 0.5, y = 0.06 sample, the 5-K data in Fig. 3d are well described by the WAL formula for |B| < 1 T, 

with α = 2.25 and lφ = 100 nm, but at larger |B| we need an additional component that varies as −B2. 

The latter contribution might come from bulk states. 
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2.3. Phase diagram 

To summarize the effect of indium substitution on PSIT materials, we present in Fig. 4,  a 

ternary phase diagram of the system to illustrate trends for several properties: the character of the 

low-temperature resistivity (metallic, insulating, superconducting) and the solubility limit. Here, the 

end members are SnTe, PbTe, and InTe. The closer to the end member, the higher concentration of 

that component. Each of the six dashed lines starting with the same end member InTe represent a 

series of PSIT with the fixed Sn:Pb ratios, as labeled by x. 

For low indium doping (blue region), samples show weak metallic resistivity, as in SnTe. A 
few percent indium doping turns the Pb1−x Snx Te samples into true insulators (orange region). 

By increasing the In content further, superconductivity may be achieved (green region).   When 

the indium content exceeds the solubility limit in the system (marked with white crosses), where 

additional In is no longer simply substituting for Pb/Sn, an impurity phase of InTe, with a tetragonal 

crystal structure, appears and the samples are no longer single crystals. The critical In concentrations 

that divide these various regions are illustrated with dashed lines. 
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Figure 4. (color online) A ternary phase diagram summarizing all the resistivity behaviors of 

(Pb1−x Snx )1−yInyTe. Experimental results for SIT with In content up to 10% is obtained from Ref. 

[? ]. The solubility limit of In in PbTe (24%) is obtained from Ref. [? ]. Samples with weak 

metallic resistivity are shown in blue, with insulating resistivity are shown in orange, and with 

superconductivity are shown in green. White crosses represent the solubility limit of In, beyond which 

the sample no longer remains in a single phase and secondary InTe phase shows up. 
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From the resistivity behavior in the phase diagram, it can be seen that the In substitution 

effect shows consistent trends. Superconductivity emerges almost immediately with indium doping 

in SnTe. In Pb1−x Snx Te, though, with increasing Pb content the amount of In needed to induce 

superconductivity goes up, and the range of superconductivity with respect to In-doping shrinks. 

Meanwhile, the bulk insulating region is broadens with increased Pb, and the maximum bulk 

resisitvity that can be achieved in the PSIT family is found in the x=0.30 and x=0.25 series[? ]. Those 

materials along with previous reported bulk insulating TIs Sn-Bi1.1Sb0.9Te2S[? ] could provide good 

platforms to study the true topological ’insulators’, in which bulk conduction would not dominate 

the transport behavior, assuming that their surface states remain topological. 
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2.4. Bulk band structure 

To address the divergent resistivity behaviors, it is helpful to consider the bulk electronic 

structure. SnTe and other IV-VI materials with the rocksalt structure have long attracted attention 

as a model for small band gap semiconductors. The topologically distinct band structure of SnTe 

(nontrivial, x = 1) and PbTe (trivial, x = 0) involves a change in the ordering of the conduction and 

valence bands at L points. This implies that the band gap of the alloy Pb1−x Snx Te first closes and then 

re-opens as x increases, as shown in Fig. 5[? ? ? ]. It follows that there must be a topological quantum 

phase transition upon varying the Pb/Sn ratio in Pb1−x Snx Te, and experiments indicate that it occurs 

near xc ≈ 0.35 at low temperature[? ? ? ? ? ? ]. 

Generally, it is believed that each In dopant will provide one less valence electron than Sn2+ and 

Pb2+, so that indium should be considered as a p-type dopant. In the case of SnTe, one begins with a 

p-type semiconductor due to Sn vacancies. With In doping, the number of cation vacancies decreases, 

which partially compensates the expected impact of the In; nevertheless, the p-type carrier density 

initially grows with increasing In concentration [? ? ]. The situation becomes more complicates for 

an Indium concentration above 10%, where the sign of the Hall resistivity changes [? ], suggesting 

the possibility that two types of carriers are simultaneously present. In fact, in indium doped PbTe 
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Figure 5. (color online) Energy diagrams illustrating the relative location of the conduction, valence 

band and indium induced impurity band in the continuous series of Pb1−x Snx Te alloys with low In 

doping level, where indium can be simply treated as a p-type dopant. In SnTe, the conduction band 
has a symmetry of L+; this undergoes a band inversion at x ∼0.35 and the symmetry is inverted in 

PbTe. The band gap is illustrated with blue dashed lines, with the end member SnTe having 360 meV 

and PbTe having 190 meV [? ]. The Fermi level, controlled by the indium impurity states, is indicated 

schematically by the red line. 
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and Pb1−x Snx Te, In-doping results in far less than 1 electron per impurity atom, which suggests In 

doping also introduces an impurity band that causes the effect of pinning the Fermi level[? ? ]. 

Evidence for the quasi-localized character of indium-induced states has been provided by a recent 

nuclear magnetic resonance study on Sn0.9In0.1Te[? ]. 

In this scenario, the large bulk resistivity in series with x  = 0.25 − 0.35 is a consequence of 

indium sites introducing localized impurity states that pin the chemical potential[? ? ]; the electronic 

properties then depend on the position and width of the indium level. In the region of compositions 

where the localized impurity band lies in the band gap, or a position that is very close to the band 

edge, the free carrier concentration is extremely low at low temperature, which is reflected in the very 

large bulk resistivities for x ∼ 0.30 that we observe in the transport measurements. 
According to the schematic evolution of the band structure of Pb1−x Snx Te and the energy of the 

In impurity level in Fig. 5, the chemical potential sits in the valence band on the Sn side, consistent 
with p-type metallic behavior, while it moves to the conduction band on the Pb-rich side.  With a 

very small amount of indium doping on the Pb-rich side, the opposing trends of decreasing cation 

vacancies and increasing In-substitution initially lower the carrier density, leaving the system weakly 

metallic. With further increases in In content, the Fermi level drops into the band gap, where it gets 

pinned by the impurity state level. The magnitude of the resistivity will then depend largely on the 

size of the band gap, which is determined by the Sn content, x, instead of the indium content, y[? 

]. Figure 6 gives a summary of the variation in resistivity as a function of x in PSIT compounds 

with either 3% or 6% indium doping. The same trends are found as a function of x, although the 

low-temperature resistivities tend to be higher for y = 0.06. 
It is worth mentioning that a long relaxation time was observed in the bulk resistance for several 

samples, especially those that are truly bulk insulators, i.e. x = 0.25, 0.30, 0.35. After a sample was 

quenched down to low temperature (liquid-helium), its resistivity gradually decreased with time. 

Band gap 



104
 

108
 

106
 

102
 

100
 

10-2 

1000 

108
 

106
 

104
 

102
 

100
 

10-2 

1000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.  (color online) Temperature dependence of the resistivity for (Pb1−x Snx )0.97In0.03Te (a) and 

(Pb1−x Snx )0.94In0.06Te (b) single crystals. The resistivity value are shown in a logarithmic scale. 

 
 

230 

 
231 

 
232 

 
233 

This relaxation phenomenon can last for days until the resistivity reaches a stable value. Previous 

studies on Pb1−x Snx Te doped with group-III elements revealed similar time-dependent behavior, 

and it was explained in terms of the interaction between the crystal lattice and the non-equilibrium 

electron densities associated with the pinned chemical potential at the impurity level[? ]. 
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2.5. Debate on topological superconductivity 

At higher indium content (>10%), superconductivity emerges in Pb1−x Snx Te samples, with 

a typical superconducting transition temperature in the range of 3 to 5 K. There are intriguing 

questions about the nature of the superconductivity: is it conventional BCS superconductivity, or 

unconventional topological superconductivity? Topological superconductors are accompanied by 

gapless states at the edge or surface, which characterize the nontrivial topology of the bulk state and 

they may be composed of Majorana fermions [? ? ]. 

The first plausible example of TSC (associated with TI or TCI compounds) was Cux Bi2Se3[? ]. 

Experimental evidence from point-contact spectroscopy[? ? ] showing zero-bias conductance peaks 

coexisting with a superconducting gap may be indicative of the unconventional superconductivity, 

which is necessary (but not sufficient) for TSC in inversion symmetric, time-reversal-invariant 

superconductors. Similarly, results for In-doped SnTe from both point-contact spectroscopy and 

high-resolution ARPES studies have been interpreted as evidence for odd-parity pairing and 

topological superconductivity [? ? ]. 

A markedly different conclusion was drawn, however, in an STM study on Cu0.2Bi2Se3[? ], which 

reported a superconducting gap without any zero bias anomalies. Later studies on the optimally 

doped TCI system SIT using thermal conductivity[? ], magnetization and muon-spin rotation (µSR) 

measurements[? ] also supported the conclusion that SIT has a ful superconducting gap in the bulk, 

and is more likely to be a conventional s-wave superconductor.  Similarly, STM measurements[? 

] of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te 

on the high-symmetry (001) surface lead to the same conclusion, that the superconducting sample 

seems to be fully gapped without any in-gap states, contrary to the expectations for a topological 

superconductor. 

These controversies may be due to the complexity of the junctions in point contact 

measurements, since the spectra that are indicative of an unconventional superconductor can also 
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be interpreted by other mechanisms[? ? ]. On the other hand, the observed fully-gapped tunneling 

spectra in STM measurements on Cux Bi2Se3 and SIT can be also explained by the results of exotic 

pairing states with additional parameters[? ]. In addition, in TCI compounds where the exotic surface 

states only exist on certain high-symmetry planes guaranteed by the mirror symmetry, the possibility 

of topological superconductivity feature cannot be ruled out from studies of the (001) plane alone 

[? ]. Besides, due to the poor cleavability cubic (Pb1−x Snx )1−yInyTe, it might be tricky to expose the 

desired surface for surface-sensitive measurements. 

The debate on topological superconductivity has recently been reinvigorated by a nuclear 

magnetic resonance study of Cu0.3Bi2Se3 [? ]. There the authors find clear evidence for a breaking 

of the spin-rotation symmetry in the superconducting state, consistent with spin-triplet pairing. This 

will surely motivated further investigations. 
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3. Discussion 

In recent years, In-doped SnTe and Pb1−x Snx Te have been studied extensively both as examples 

of topological crystalline insulators and potentially-interesting superconductors. Our study of a 

broad range of compositions in the PSIT system shows that indium doping has a nonmonotonic effect 

on the electronic properties, which can be explained from the standpoint of the relative location of 

the indium-induced impurity band and the bulk band structure.  In this article we have presented 

a summary which recaps our findings and conclusions, which can be instructive for future work on 

this system. 

In the effort of looking for a new topological superconductor, Tl5Te3 has been found to be 

tunable between superconducting and topological surface states by Sn-substitution[? ? ], which is 

quite similar to the In-substitution effect on the Pb1−x Snx Te system. These facts may imply that the 

topological surface states and the bulk superconductivity are two competing parameters. The goal of 

mixing the superconducting and topological characters remains a challenge. 

A plausible strategy of looking for Majorana fermions is to artificially construct topological 

insulator/conventional superconductor heterostructures and make of use the superconducting 

proximity effect[? ? ? ? ? ? ]. Both SIT and PSIT would be perfect platforms for this purpose, since 

these systems undergo a continuous change from a TCI to a (likely conventional) superconductor. 

More specifically, the large bulk resistivity shows up in (Pb1−x Snx )1−yInyTe with x  = 0.25–0.5, 

a p-type matrix can be realized in series the with x = 0.35–1.0, and superconductivity can also 

be realized in the latter compounds, which makes this system quite promising for exploitation in 

heterostructures. 
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4.1. Sample preparation. 

In the Pb-Sn-In-Te alloy system, several elemental metals or compounds are found to be 

superconducting near liquid-helium temperatures, as indicated in Fig. 7. To investigate the indium 

substitution effect on the (Pb,Sn)Te system, compounds with the composition in the area of the 

red triangle have been grown and carefully studied in this work. Single crystal samples with 

nominal composition, (Pb1−x Snx )1−yInyTe (xnorm=0.2-0.5, 1.0, ynorm=0-0.5), were prepared via the 

vertical Bridgman method. Stoichiometric mixtures of high-purity (99.999%) elements were sealed 

in double-walled evacuated quartz ampoules. The ampoules were set in a vertical position, heated 

at 950◦C in a three-zone vertical box furnace, with rocking to achieve homogeneous mixing of the 
ingredients.  The crystal growth took place via slow cooling from 950 to 760 ◦C at the rate of 1.5 
◦C/hr, and then the samples were gradually cooled down to room temperature over another 3 days[? 

]. Figure 8a shows examples of the resulting crystals (before removal from the quartz tubes). 

For a few compositions, where we needed large crystals for ARPES measurements, we used 

the modified floating-zone method.  In the normal traveling-solvent floating-zone (TSFZ) method, 



311     (∼15 cm) and mounted at the bottom shaft in the floating zone furnace. The space inside the large 
312     glass chamber surrounding the quartz tube was filled with high-purity Ar at 1 bar to avoid oxygen 

313     diffusion through the quartz.  During the growth the rotating shaft kept moving downwards at a 

314     velocity of 0.5-1 mm/hr, so that the new crystal gradually grew from the bottom of the starting ingot, 

315     resulting in a sample such as that shown in Fig. 8b. 
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a polycrystalline rod is prepared as feed rod and seed rod, fixed at the upper or lower shaft of the 

furnace. During the growth, the molten zone is not in contact with any container. However, elements 

such as indium and tin easily evaporate and are reactive when heated to high temperature. Therefore, 

we used the modified TSFZ method, as explained in detail in our earlier publication[? ], where 

the starting material, prepared in the vertical Bridgman method, was sealed in a long quartz tube 
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Figure 7. (color online) Phase diagram of composition and superconductivity of the Pb-Sn-In-Te alloy 

system. The known superconducting metals or compounds Pb, Sn, In, InTe, and Sn0.3In0.7 are marked 

on the diagram, respectively. Based on this superconducting phase diagram, we did thorough studies 

in the region marked with red dashed lines. 
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For each sample used in the magnetization, transport and other measurements, the chemical 

composition was characterized using energy-dispersive X-ray spectroscopy (EDS). In this article, 

chemical composition values x and y correspond to the measured concentrations. 



 

 
 

Figure 8.  (color online) Single crystal rods of PSIT alloy grown by vertical Bridgman method (a) and 

modified floating zone method (b). 
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4.2. Sample characterizations. 

To identify the room-temperature crystal structure, each sample was characterized by X-ray 

powder diffraction (XRD) measured with Cu Kα radiation from a model Rigaku Miniflex II. 

Microstructure and chemical composition of the samples were carefully investigated by an analytical 

high-resolution scanning electron microscope (SEM) equipped for EDS, model JEOL 7600F, located 

at the Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory. For each 

crystal piece, EDS was measured at 10 positions and the mean value was taken to characterize the 

sample. These measured x and y values agreed within the measurement uncertainty (±0.02), and the 
measured values are used throughout this article. Typical microstructure pictures of the PSIT cleaved 

surfaces were taken by optical microscope. 

To study the effect of indium substitution on the magnetic properties, dc magnetic susceptibility 

measurements were performed using a commercial superconducting quantum interference device 

(SQUID) magnetometer (MPMS, Quantum Design), for temperatures down to 1.75 K. The sample 

pieces were cut into an approximately cubic shape, typically weighing 0.1 g. 

For transport measurements, thin bar-like samples with typical dimensions of 4 × 1.5 × 0.5 mm3 

were cut from the bulk crystal and then polished. Electrical resistance was measured in the standard 

four-probe configuration, using gold wires and room-temperature-cured, fast-drying silver paint for 

the ohmic contacts on top side, and performed with a Keithley digital multimeter (model 2001), using 

the MPMS for temperature control. Measurement errors due to the contact geometry are estimated to 

be less than 10%. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

 

SIT: Sn1−x Inx Te 

PSIT: (Pb1−x Snx )1−yInyTe 

(a) (b) 



 

 
351 

 
352 

MPMS: Magnetic Property Measurement System 

SQUID: Superconducting Quantum Interference Device 
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